Faster LEGO-based Secure Computation without Homomorphic Commitments
نویسندگان
چکیده
LEGO-style cut-and-choose is known for its asymptotic efficiency in realizing actively-secure computations. The dominant cost of LEGO protocols is due to wire-soldering — the key technique enabling to put independently generated garbled gates together in a bucket to realize a logical gate. Existing wire-soldering constructions rely on homomorphic commitments and their security requires the majority of the garbled gates in every bucket to be correct. In this paper, we propose an efficient construction of LEGO protocols that does not use homomorphic commitments but is able to guarantee security as long as at least one of the garbled gate in each bucket is correct. Additionally, the faulty gate detection rate in our protocol doubles that of the state-of-the-art LEGO constructions. We have implemented our protocol and our experiments on several benchmark applications show that the performance of our approach is highly competitive in comparison with existing implementations.
منابع مشابه
JIMU: Faster LEGO-Based Secure Computation Using Additive Homomorphic Hashes
LEGO-style cut-and-choose is known for its asymptotic efficiency in realizing actively-secure computations. The dominant cost of LEGO protocols is due to wire-soldering — the key technique enabling to put independently generated garbled gates together in a bucket to realize a logical gate. Existing wire-soldering constructions rely on homomorphic commitments and their security requires the majo...
متن کاملConstant Round Maliciously Secure 2PC with Function-independent Preprocessing using LEGO
Secure two-party computation (S2PC) allows two parties to compute a function on their joint inputs while leaking only the output of the function. At TCC 2009 Orlandi and Nielsen proposed the LEGO protocol for maliciously secure 2PC based on cut-and-choose of Yao’s garbled circuits at the gate level and showed that this is asymptotically more efficient than on the circuit level. Since then the L...
متن کاملCommitted MPC - Maliciously Secure Multiparty Computation from Homomorphic Commitments
We present a new multiparty computation protocol secure against a static and malicious dishonest majority. Unlike most previous protocols that were based on working on MAC-ed secret shares, our approach is based on computations on homomorphic commitments to secret shares. Specifically we show how to realize MPC using any additively-homomorphic commitment scheme, even if such a scheme is an inte...
متن کاملA Protocol for Secure 2-Party Computation
We present a protocol for secure 2-party computation based on homomorphic encryption along with a basic implementation of the protocol. Secure 2-party computation allows two parties to compute some function of their respective inputs in collaboration without revealing the inputs, unless both parties agree to do so. The presented protocol is based on additive sharing and homomorphic encryption a...
متن کاملFaster Secure Arithmetic Computation Using Switchable Homomorphic Encryption
Secure computation on encrypted data stored on untrusted clouds is an important goal. Existing secure arithmetic computation techniques, such as fully homomorphic encryption (FHE) and somewhat homomorphic encryption (SWH), have prohibitive performance and/or storage costs for the majority of practical applications. In this work, we investigate a new secure arithmetic computation primitive calle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017